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Abstract—With the ever-increasing application demands, the
execution of applications may require more resources than
locally available. In this scenario, resources from multiple
infrastructure-as-a-service (IaaS) cloud providers can be leased
to fulfill application requirements. In this paper we deal
with the problem of scheduling workflow applications in
multiple IaaS providers, where the workflow scheduler must
determine on which computational resource each component
of a workflow should be allocated in order to minimize the
involved monetary costs. We propose the use of different
levels of discrete-time intervals in linear programming to
schedule workflows with deadline constraints in multiple cloud
providers. Simulations shown that increasing the granularity
level of time-discretization decreases the scheduler running
time, although yet achieving good solutions.
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I. INTRODUCTION

E-Science and e-business applications are nowadays re-
quiring an increasing computational power [1], [2], which
has been exceeding the capacity available within the
premises of a single organization. These complex applica-
tions comprise workflows, which can be decomposed into
sets of smaller jobs that must be processed in a well-
defined order. These data dependencies between jobs are
commonly represented by a directed acyclic graph (DAG),
where its nodes represent the service of a workflow, while
its arcs represent data dependencies. These applications can
be scheduled on the cloud providers, but optimal scheduling
algorithms take too long to run for larger DAG instances
due to the NP-Completeness of the scheduling problem.

We consider a scheduler modeled as integer linear pro-
gram (ILP) for the scenario where the cloud customer
submits his/her scientific workflow to be executed and
managed by a workflow execution service (SaaS or PaaS, for
instance) along with a response time (deadline) to be obeyed.
Nevertheless, the input size of this scheduling problem in-
creases with the DAG size and with the established deadline,
since the ILP discrete-timeline becomes larger, making the
scheduler running time increase considerably [3].

In this paper we propose the \-granularity technique in
order to modify the granularity of the schedule timeline
when using ILP, aiming to quickly yield feasible scheduling
solutions. By using different levels of discrete-time intervals

in the timeline of the ILP, the input size of the schedule
problem can be reduced, and the solver can be able to
achieve solutions faster. The proposed technique is applied
to a previously developed workflow scheduler [3], which
was limited to small DAGs. Simulation results shown that
increasing the granularity of the discrete-timeline is a useful
mechanism to make the integer linear program to find
feasible solutions for larger DAGs on a timely manner.
The next section shows related work. In Section III we
present the considered workflow scheduling problem and
the scheduling algorithm utilized in our evaluation, while
Section IV shows the proposed time-discretization approach.
Simulation results are discussed in Section V, while the final
remarks and conclusions are presented in Section VI.

II. RELATED WORK

Stefansson et al. propose in [4] a case study for large
production scheduling. They present a comparison between
two mathematical formulations for a pharmaceutical pro-
duction scheduling problem as a mixed integer linear pro-
gramming (MILP), one using a discrete-timeline and the
other one a continuous-timeline. They concluded that using
a continuous-time better represents the real-world decision
problem and the solutions are more accurate. On the other
hand, using a discrete-time makes the structure model sim-
pler and complex constraints can be added without much
effort. Floudas et al. overview in [1] the advances in MILP
for the scheduling problem of chemical processing systems.
They state that the solution accuracy would increase by
reducing the length of the time intervals (slots), but not only
the number of variables and constraints should be higher, but
also the solver running time. Although these works present
studies on time discretization of scheduling problems, none
of them consider the cloud computing context.

Tordsson et al. describe in [5] an ILP formulation in order
to optimize the placement of independent tasks in multiple
cloud providers according to user-specified criteria. They
consider a static cloud brokering scenario and also use IBM
CPLEX solver' to evaluate simulations, in which execution
times increase considerably as the number of tasks increases.

! http://www.ibm.com/software/integration/optimization/cplex-optimizer/


This is a pre-print version.
The full version is available at the publisher's website.


Van den Bossche et al. propose in [6] an ILP formulation
of the independent task-scheduling to minimize the cost of
external provisioning in hybrid clouds. In order to quickly
obtain feasible solutions, they had to simulate the scheduling
problem with low (= 20) numbers of tasks. Although
these works present advances on scheduling problems in
cloud computing environment, none of them considers the
execution of workflows. Moreover, the related work also
shows limitations regarding to the number of tasks versus
the scheduler execution times.

IIT. BACKGROUND

The workflow scheduling problem in cloud environment
can be tackled using either a static or a dynamic approach
[2], [5]. The static approach is suitable for situations where
the cloud provider has high resource availability and its
conditions (resource prices, resource configurations, etc.) do
not constantly change throughout the workflow execution
life-cycle. Thus, the workflow scheduling can be performed
off-line in advance to workflow deployment. On the other
hand, the dynamic approach is more appropriate in scenarios
where the conditions of uncertainty are high, such as vari-
able resource prices, dynamic resource availability, variable
bandwidth in network links, among others. In this manner,
the scheduler algorithm should be run on-line to update the
cloud environment information. Currently, cloud provider
conditions tend to be static [5] because some parameters
are rarely modified, such as virtual machine (VM) prices
unusually change and resources availability is unknown but
assumed to be high?. In this paper we focus on the static
approach, which requires some data to be known a priori,
while the on-line approach is already under investigation.

In this section we describe the ILP of the scheduler from
[3]. It determines the VMs to be leased by a SaaS (or PaaS)
provider from multiple IaaS providers to execute workflows
meeting the customer’s deadline and minimizing the VMs
leasing costs. This scheduler is able to provide low-cost
schedules, but its execution time is a drawback for larger
workflows. Our proposal is incorporating the A-granularity
approach to this ILP, aiming to provide faster scheduling
solutions. This proposal can be applied to other ILPs that
use discrete variables to represent the schedule timeline.

This paper considers workflows whose services are domi-
nated by computer processing time instead of I/O or memory
access time. However, it is possible to modify the ILP to also
consider workflows that can be I/O- or memory-bound rather
than CPU-bound, because in those cases using only a faster
VM can not yield an improvement in the scheduling. To
achieve this, we would need to know information a priori
about I/O and memory access of the workflow’s services
and the disk and memory speeds of the VMs. With such

2Amazon EC2 make efforts to be available at least 99.95% during the
Service Year, more details in http://aws.amazon.com/ec2-sla/

details, we can evaluate the time spent with I/O or memory
operations, and select appropriate virtual machines. In short,
these considerations are being evaluated as future work.

A. Notation and Problem Modeling

The following notations are used by the integer linear
programming formulation of the problem [3]:

« n: number of nodes in the DAG (n € N);

e W = {wy,...,wy}: set of processing demands for
each node u; € U, expressed as the number of instruc-
tions to be processed (w; € R™);

e fi; : number of data units to be transmitted between
node n; and n; (f;; € RT);

e H(j) = {ij 1 4 < j, there exists an arc from vertex
i to vertex j in the DAG}: the set of immediate
predecessors of n;;

e Dg: finish time (deadline) desired by the SaaS customer
for the DAG G;

e T = {i1,...,im}: the set of TaaS providers that
compose the computing infrastructure of the problem;

e 0;: maximum number of VMs that a cloud customer
can have leased from the IaaS ¢ € 7 at any given time
t (51 € N).

Let S; = o] Uoy be the set of all service level agreements
(SLAs) that have been signed between the software-as-a-
service (SaaS) provider and the IaaS provider ¢ € Z. The S;
set is composed of two disjoint subsets: (i) the subset o] that
includes SLAs for reserved VMs readily available, and (ii)
the subset ¢ that includes only SLAs for on-demand VMs
that can be leased on-the-fly. Let V; be the set that includes
only VMs associated with prices for reserved resources from
IaaS ¢ € Z and V; be the set that contains only VMs
associated with prices for on-demand resources from IaaS
i €Z e, V; = V] UV represents the set of VMs that
can be leased from IaaS provider ¢ € Z. Each VM v € V; is
associated with an element v, of V; and with an element v,
of € V. With this, the corresponding v, and v, of v have the
same hardware configuration, but are billed at different price
points. In general, the price per time unit of v, is greater
than or equal to v,, being v, and v, related to the v.

Each SLA s, € o] is related to only one type of VM
v € V;, and each SLA s, € o7 is related to only one
type of VM v € V7. One of the parameters defined in each
contract agreement s € S; is the number a, € Nt of VMs
requested by the SaaS provider. Another SLA parameter
indicates the duration time ¢; € N of the term commitment.
The resources leased by the SaaS provider are presented in
the set V, which is defined as:

V:{UV,», vz'ezzsﬁég} (1)

i=1

where m = | Z | and V; = V] UV?. In other words, according
to the SLAs signed with each provider IaaS 7 € Z, the



set V is composed. Moreover, we define the following IaaS
characteristics that are also intrinsic for the ILP formulation:

o m: number of IaaS providers, m € N;

e P,: number of processing cores of v € V, P, € NT;

o jvq: time units that VM v € )V takes to execute 1
instruction, with 7, € RT;

o Ly, ,: time units taken to transmit 1 data unit over
the network link between v, € V and v, € V, with
Lo, v, € RTUIf vg = vy, then Loy, 0, = Loy, 0, = 0;

o B;,: binary variable that assumes a value 1 if v belongs
to the TaaS provider ¢ € Z (i.e. v € V;), and 0 otherwise.

o C,: price to lease v € V for 1 time unit, with C, € R™.

Vendor lock-in problem is still an open issue in cloud

computing environments [7]. This problem restricts users
from migrating their applications to a different cloud
provider. Although this work considers multiple clouds, we
assume that all providers use an open-standard interface, i.e.,
open cloud computing interface (OCCI)*, to describe appli-
cations that are compatible across multiple cloud providers,
thus we consider the cloud lock-in problem to be beyond the
scope of this paper. Let ( = {o7,...,0,, } be the set that
contains all SLAs associated with reserved VMs. We define
the variable K, ,, that assumes the value 1 if the SLA s € ¢
is related to the reserved VM v € V, or 0 otherwise. That
means, if £;, =1 and B; , =1, then s € o] and v € V.

B. Formulation of the Integer Linear Program

The ILP solves the scheduling problem through the binary
variables x and y and the constant C,, [3]:

e Ty, binary variable that assumes the value 1 if the
node u finishes at time ¢ in the VM wv; otherwise this
variable assumes the value 0;

e Y, binary variable that assumes the value 1 if the
VM v is being used at time ¢; otherwise this variable
assumes the value 0;

e C,: constant that assumes the cost per time unit for
using the VM wv.

Before formulating a mathematical model for any schedul-
ing problem, it is necessary to take into consideration the
timeline representation. Time can be discrete or continuous
values [1]. Workflow scheduling usually requires the use
of discrete variables to represent discrete decisions. For
instance, resource assignment and atomic tasks allocation
over time are some activities that represent discrete decisions
involved in the scheduling problem [4]. Moreover, as in
Amazon EC2, partial VM-hours consumed are billed as full
hours. Therefore, the utilized ILP formulation only considers
discrete-time representation. In Section IV we discuss how
we can contour these problems to make the ILP applicable
in practice. Let 7 = {1,...,Dg} be the timeline of the
possible workflow execution time, which ranges from 1 to
the desired Dg. The ILP is formulated as follows [3]:

3More details in http://occi-wg.org
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The constraint (C1) determines that a DAG node z cannot
begin its execution until all preceding nodes have finished
their processing and the resulting data has arrived at the
VM that will run z. The constraint (C2) specifies that the
number of DAG nodes executing on a VM v at a given
time ¢ cannot exceed the number of processing cores of v.
The constraint (C3) determines that a VM must stay active
(i.e., with status being used enabled in the variable y) while
it is executing the node which requires it. The constraint
(C4) determines that a VM must stay active while it is
sending (or receiving) data generated by precedent nodes.
This constraint was added to the original formulation from
[3] in order to charge the VMs usage during data transfers
between workflow components. The constraint (C5) specifies
that a service must be executed only once and in a single
VM. The constraint (C6) establishes that a DAG node u
cannot be set as finished until it has been executed in a VM
v. The constraint (C7) specifies that the number of reserved
VMs plus the number of on-demand VMs cannot exceed



the maximum number allowed by each IaaS provider [8].
The constraint (C8) establishes that the amount of virtual
machines being used cannot exceed the limit stipulated in
the SLA. The last two constraints, (C9) and (C10), specify
that the variables of this integer linear program, namely x
and y, will only assume binary values.

In the next section we discuss the representation of time,
proposing the use of wider time intervals in the set 7 to
reduce the size of the search space when solving the ILP.

IV. REPRESENTATION OF TIME

To formulate a mathematical model for any scheduling
problem, one major issue that arises is how to represent the
timeline of the application execution. In general, time can be
classified into two main categories [1], [4]: discrete-time and
continuous-time. In the first one, schedulers are formulated
through the approach of time-discretization, i.e., the timeline
is divided into a number of equally spaced intervals. There-
upon, the events (scheduler decisions) can only take place
at the beginning (or the end) of those intervals. On the other
hand, with a continuous-time, the scheduling decisions are
made at any instant of time within the timeline. Although
the continuous-time increases accuracy of the scheduler, i.e.,
it presents a finer granularity, the mathematical ILP model
becomes more complex [9], as well as it takes more time to
obtain optimal solutions.

A. The \-granularity Approach

The scheduler (ILP solver) execution time can be enlarged
by the granularity level of the timeline, by the user desired
response time (deadline), as well as by the DAG size.

When small lengths for the time intervals need to be
used and/or the timeline under consideration is too long, the
number of discretized-time intervals in the set 7 can be very
large [10]. Thereby, the workflow scheduler leads to very
large combinatorial problems, which are computationally
very expensive to solve or even intractable in a timely
manner. The parameter (or dimension) time is the main bot-
tleneck that prevents scalability in the scheduler presented
in [3]. Due to the precedence constraints between the DAG
nodes and the NP-Completeness of the scheduling problem,
both the solver execution time and the time set 7 grow
quickly when we try to schedule DAGs with large number
of nodes and dependencies. In other words, the main variable
of the ILP is a three-dimensional binary-matrix (z,, ¢,,: node
u, time ¢, and virtual machine v), and therefore the larger
the binary matrix, the higher the solver execution time. In
this paper we propose increasing the granularity of the time-
discretization in order to reduce the size of the binary-matrix
Zy,tp- With time discretized into larger units, the size of
the time set 7 is reduced and consequently the size of the
binary matrix is also reduced. Therefore, with a smaller T,
the solver execution time tends to decrease. We define the
proposed A-granularity approach as the multiplicative factor

that determines the size of discrete-time intervals, and the
set 7 is rewritten as in equation (2).

T:{)\,Q/\,3)\,4)\,...,A} ‘ A<Dg and AeNT (2

Short A-granularity (fine-grained time intervals) or long
time-horizon (high deadline) can considerably increase the
amount of discrete-time intervals in the set 7. In other
words, if the discretization intervals are fine enough to cap-
ture all significant events, then the number of ILP constraints
can become very large and the workflow scheduling problem
can be computationally expensive to solve. Thus, the finer
the A-granularity, the greater the solution search space and,
consequently, more time is spent by the scheduler to find a
feasible solution with reduced monetary costs involved.

However, large A-granularity (coarse-grained time inter-
vals) presents a drawback: they can substantially decrease
the size of 7 and, thus, the scheduling may become unfea-
sible because the scheduler will not find sufficient discrete-
time units for all DAG nodes. Furthermore, the coarse
A-granularity may increase the monetary cost of feasible
solutions, because as the size of the set 7T is reduced,
the scheduler is forced to choose faster virtual machines
(and consequently more expensive) to schedule all DAG
nodes before the deadline, leading to an expensive workflow
execution and resources (or money) wastefulness. Therefore,
there is a clear trade-off between using small discrete-time
intervals to obtain a more precise scheduling or use long
discrete-time intervals to reduce the solver execution time.
We aim to find solutions faster with monetary costs reduced.

B. Correcting Estimation Errors Introduced by The Time-
discretization Approach

Reducing the amount of discrete-time intervals in the time
set 7 to reduce the solver execution time produces a penalty
in the monetary execution cost of the schedule. When we
increase the A-granularity, we force the solver to pick faster
(and more expensive) VMs. Thus, the principle of the time-
discretization approach goes in the opposite direction of
the ILP objective function, which tries to minimize the
monetary cost involved in the workflow scheduling. For
instance, one discrete-time interval when A = 2 is equivalent
to two discrete-time intervals when A = 1; i.e., if the solver
schedules a DAG node u to be executed in only one discrete-
time interval when \ = 1, then this same DAG node u will
also be executed in only one discrete-time interval when
A = 2. With that, there will be an additional monetary
execution cost of one time unit unused in the VM where
DAG node u was scheduled when A = 2, increasing the
total monetary execution cost involved. Thus, for each A > 1
value, the solver will provide an estimate (upper bound) of
the monetary cost of the actual workflow execution.

The solver introduces empty spaces in the schedule that
would be charged regardless of its use, since the VMs



Table I
TAAS PROVIDERS A, B, AND C

Provider| Type Core | Core Per- On-demand Reserved
formance Price Price
A Small 1 1.5 $0.13 $0.045
Medium 2 1.5 $0.20 $0.070
Small 1 2 $0.17 $0.045
Medium 2 2 $0.30 $0.059
B Large 3 2 $0.40 $0.140
XLarge 4 2 $0.52 $0.183
Dbl. X-Large | 8 2 $0.90 $0.316
Small | 2 $0.15 $0.052
C Medium 2 2 $0.25 $0.088
Large 4 2.5 $0.50 $0.176
Extra-large 8 2.5 $0.80 $0.281

would remain leased during these times. This issue occurs
because the solver “believes” that one discrete-time interval,
in A = 2 for instance, will be entirely utilized by the
node that is assigned to it. Thus, given a feasible workflow
scheduling solution in A > 1, we need to (without DAG
rescheduling) recompute (i) the finish time for each DAG
node (makespan); and (ii) the total monetary computation
cost value for A = 1 in order to reduce the monetary cost
error embedded by the A-discretization approach.

The general A-discretization algorithm is shown in Figure
1. In the first line of the algorithm, the solver is called with
a A > 1 value to reduce the size of 7. If a solution is found,
the algorithm then starts the recomputation of the schedule
in order to compute the final makespan and cost results. Line
3 stores the schedule given by the solver call, and line 4 calls
the solver again, but now with A = 1 and with the schedule
already fixed as stored in line 3. At the end, this will result
in the recomputation of the schedule by suppressing empty
spaces left when the solver was first called with A > 1. Note
that we do not change the mapping-task from the first solver
call to the second solver call because we would be returning
to the initial problem with A = 1.

Require: DAG G = {U/, £}, deadline Dg, set of [aaSs V
Ensure: Schedule of G in V or Null for unfeasible solution

1: Call ILP solver with A > 1

2: if There is any feasible schedule of G in V then

3:  Save DAG schedule data (for each node u € U, save only

which VM v € V the node u was scheduled).

4: Recall ILP solver with DAG schedule data (step 3) and with
A =1 only to recompute (i) the finish execution time for
each node u € U and (ii) the total monetary execution cost
involved

end if

6: Return the solution from the last solver call

wn

Figure 1. The time-discretization technique.

Although the monetary execution cost can be reduced
in the second solver call, it will still be an upper bound
of the optimal solution. Therefore, as in other sub-optimal
approaches following the NP-completeness of the workflow
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Figure 2. LIGO DAG topology

scheduling problem, this is a price we must pay to try to get
a feasible solution quickly instead of (indefinitely) waiting
for the solver to find the optimal solution. Here, we aim at
presenting the calibration of the time-discretization as a tool
to achieve faster feasible solutions using ILP.

V. EVALUATION

We implemented the ILP in JAVA and conducted simu-
lations using the IBM ILOG CPLEX with default config-
uration. Our evaluation comprises simulations with DAGs
of real world applications such as fork-join and LIGO [11]
(Figure 2); moreover, we use three different IaaS providers.
This evaluation was also performed for Montage and fork-
join DAGs, but we focus on a more comprehensive evalua-
tion of the LIGO DAG in this section.

A. Simulation Configuration

We used 3 laaS providers in our simulations, each one
with its own prices for reserved and on-demand VMs.
Table I shows virtual machines options respectively for IaaS
providers A, B and C. We assume that the existing SLA
contracts for reserved VMs (i.e., the elements of the set
() comprise 4 VMs: 1 Small and 1 Medium instance from
both providers A and B. The maximum number of virtual
machines that can be leased from each IaaS provider was
set as follows: 4 =4, g =7, 6c = 2.

The public clouds usually do not provide information
about the quality of service of internal links (between virtual
machines) and external links (between IaaS providers). We
assume that the bandwidth of internal links is larger than
the bandwidth of external links, which is a reasonable
assumption in real environments. This is reflected in our
simulation by randomly generating a £ in the [2,3] real
interval for external links, while for internal links the set £
is taken from the [0.1,0.2] real interval. Therefore, through
the VMs already reserved and the ones that can be leased
on-demand, our goal is that the overall solver execution
time (solver time of workflow scheduling plus solver time of
workflow cost recomputation) is small and, moreover, with
lowest possible workflow monetary execution cost.

B. Results

Simulations were run on an Intel® Core™ Xeon X 5650
CPU 2.67GHz and 16GB of RAM. We have run 30 sim-



ulations for each DAG with the IaaS provider configura-
tions shown in Table I, plus the 4 reserved VMs. In each
simulation, the computation cost for each DAG node and
the communication cost for each DAG node dependency
were randomly taken from the [1, 3] real interval. We varied
the A-granularity to evaluate the relation between workflow
monetary execution cost and solver execution time met-
rics. Meanwhile, we also provide data metrics of workflow
makespan and number of unfeasible solutions to show the
effect of the variation of A on these metrics. Furthermore,
in order to obtain a scheduling solution, the solver had its
running time limited to 10 minutes for each simulation. After
that time, the solver returned the best solution so far, if
any. The time limit of 10 minutes was chosen because the
majority of feasible solutions for the LIGO and 50-nodes
fork-join DAGs with A = 1 start to be found in the first 9
minutes of the solver execution.

To represent possible deadlines, we have run simulations
with Dg varying from Tar X 2/7 10 Trpas X 6/7 in
1/7 steps, where Ty, is the makespan of the cheapest
sequential execution of all DAG nodes on a single resource.
Deadlines of T},4, % 1/7 showed only unfeasible solutions
for all solver executions, while Dg of T},4, X 7/7 can be
achieved by putting all tasks in the cheapest resource. The
divisor 7 was chosen only to assess the evolution of the A
value with increasing Dg, so other dividers could be used.

Figure 4 shows the evolution of the solver execution
time for different DAGs with the original scheduler from
[3]. When we increased the size of the DAG (number of
nodes and dependencies between nodes), we indirectly also
increased (i) the number of the discretized-time intervals on
set T (ii) the number of possible workflow scheduling so-
lutions; and (iii) the solver execution time. For instance, for
Dg = Tmaz % 6/7, the solver took, on average, 1.15, 141.43,
1652.92 e 3456.34 seconds to find a feasible solution to the
DAG fork-join with 10, 20, 30 nodes and the DAG Montage
[3], respectively. In these simulations, the solver also had
its running time limited (to more than 10 minutes; details in
[3]), and therefore the majority of the solutions were non-
optimal. Therefore, increasing discrete-time intervals aims
to reduce the size of set 7 and the solver execution time.

The averages shown in the following graphs are over 30
DAG-simulations for each deadline D¢. The A-granularity
proposal is compared with the original scheduler from [3],
shown as A = 1 in the result graphs.

1) Fork-Join DAG with 50-nodes: Figure 3 shows results
for simulations with 50-nodes fork-join DAGs. In these
simulations, the integer values used for A are in the set
{1,2,...,9,10}, where A = 1 corresponds to the results
for the original scheduler. The solver running time started
to decrease only when A > 4. Without fixing the monetary
execution cost error (Ist Call ILP solver in the graphs), the
higher the A value, the lower the solve running time and
the greater the workflow monetary execution cost is. For

Solver execution time evolution
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Figure 4. Solver running time with increasing DAG size.

instance, comparing the feasible solutions between A\ = 1
and A = 5, we had a reduction of approximately from 50%
(for Dg = Trmaz % 6/7) to 96% (for Dg = Trax X 2/7) in
the average solver execution time and, on the other hand, an
increase of approximately from 35% (for Dg = Tpnaqz X 6/7)
to 149% (for Dg = Tmasz X 2/7) in the average monetary
computation cost. For these feasible solutions, when the
solver recomputes (2nd Call Recomputation in the graphs)
the monetary execution costs using A = 1 instead of A = 5,
it was able to reduce significantly the monetary cost error
embedded by the time-discretization approach. For instance,
it was able to reduce the average monetary costs from 68%
(for Dg = Tmax X 2/7) to 70% (for Dg = Tmaz X 6/7).
Nevertheless, this DAG-recomputation increased the total
solver running time from only 18% (for Dg = Tz X 6/7)
to 20% (for Dg = Trax X 2/7).

When we compare the solutions found with A = 10 (2nd
solver call) with the solutions found in A = 1 (original
ILP scheduler), we were able to get quick solutions and
with reasonable monetary costs. For instance, for Dg =
Tonaz X 6/7 and A = 10 (with recomputation), the solver
was able to find solutions with an average cost 34% lower,
and with the solver execution time reduced by 75% when
compared to the solutions of the original scheduler for the
same Dg. Thus, increasing the A-granularity made it possible
to reduce both the monetary execution cost and the solver
running times. Note that for Dg = Tpae X 2/7, the solver
was able to find solutions only when A < 5, due to the
short deadline. Increasing the A value, followed by deadline
reduction, reduces the timeline-horizon (i.e., reduces the size
of the time set 7)), and therefore increases the number of
unfeasible solutions, as shown in Figure 6*. In short, the
solver does not find sufficient discrete-time intervals for all
DAG nodes. Note that when the percentage of unfeasible
solutions is 100%, the values of the monetary cost and the

4Figure 6 shows only unfeasible solutions when we call ILP solver with
A = 1 to schedule the DAG G (step 1 of the algorithm), not when we
recall ILP solver for the DAG-recomputation (step 4 of the algorithm).
Furthermore, for all feasible solutions found in step 1, the solver was able
to find a feasible solution with reduced monetary cost in step 4. Thus, the
unfeasible solutions graph of step 4 is the same as step 1.



Cost ($) — Fork-Join 50 nodes DAG

1st Call ILP Solver
m 2nd Call Recomputation

Cost ($)
Makespan

67
517 417 37 7 28 57 47

D/ Tmax ! D/ Tmax

(a) Cost

Figure 3.

makespan are zero because no VMs have been used.

The DAG-recomputation does not increase the original
makespan value found in the first call of the solver. Due
to fine-grain used in the second call of the solver, in some
cases, there could be a decrease in the makespan, because
the solver can be able to suppress empty spaces in the DAG
nodes allocation over the timeline.

2) LIGO DAG: When scheduling the LIGO DAGs, with
168 nodes, the ILP solver was able to find feasible solutions
in a timely manner only when increasing the A-granularity, as
shown in Figure 5. We simulated the LIGO DAG as follows:

e For Dg = Trae X 2/7 and Dg = Trax X 3/7, we use

the following integer values for A: {5,6,...,14,15};

o For Dg = Tpax % 4/7, we use the following integer

values for A: {10,11,...,19,20};

e For Dg = Trae X 5/7 and Dg = Trnas X 6/7, we use

the following integer values for \: {15, 16,...,24,25}

For each deadline, these A values were chosen according
to the first simulations of the LIGO DAG, and as shown
in Figure 6, no deadline had 100% viable solutions for
all A values. Furthermore, by using short discrete-time
intervals (fine-grained, i.e. A < 5), the solver could not
find feasible solutions in a timely manner for any deadline.
Feasible solutions to the LIGO DAG were possible only
with a significant reduction in the size of the time set
T (or a significant increase in the discrete-time intervals,
with high X\ values). For instance, for the short deadline
Dg = Tmaz X 2/7, the LIGO DAG scheduling was only
possible for A € {6,...,9}, and the ILP solver has yet
been aborted by the timeout of 10 minutes for all those A
values. Regardless of the deadline Dg, due to the size of the
LIGO DAG, even increasing the A-granularity , the solver
was aborted by the the 10 minutes timeout in all simulations,
returning the best feasible solution found so far.

For the recomputed solutions in Dg = T X 2/7, all
the simulations had similar solver running times (already
considering the overhead added by the DAG-recomputation).
Furthermore, for A = 9, we had solutions with the lowest
average monetary cost, which was approximately 1.8%, 17%
18% lower than the average monetary costs of the solutions
found for A values equal to 8, 7 and 6, respectively. The

Makespan - Fork-Join 50 nodes DAG
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Figure 6. Unfeasible solutions.

recomputation of the estimated costs significantly reduces
the error embedded by the A-granularity approach without
significant increase in the solve time, i.e., the correction in
the average monetary cost was from 35% (for A\ = 6) to
56% (for A = 9) of the feasible solutions initially found.

For Dg = Tmaz X 3/7, it was possible to find fea-
sible solutions only when A € {9,...,14}, and for
Dg = Tmaz X 6/7 only when A € {18,...,25}. In
other words, we need high integer values for A in order
to get a feasible solution in a timely manner. Regarding the
deadline Dg = Tjax X 6/7 and independently of the A
value, all the simulations had a similar overhead added by
the DAG-recomputation in the average solver running time
(approximately 20% of the timeout). On the other hand, we
have had a significant reduction in the monetary cost. For
instance, the solver was able to reduce the average monetary
execution cost from 70% (for A = 18) to 75% (for A = 25)
of the feasible solutions initially found. Besides that, the
different levels of time-discretization can help us choose a
specific value for A that generates the lowest monetary cost
for a given deadline Dg, e.g., A = 17 for Dg = Tz X 6/7
and A\ = 23 for Dg = Trae X 6/7.

Results presented for both LIGO and fork-join DAGs
suggest that depending on the size of the DAG and the
deadline, we need to increase the discrete-time intervals
in order to quickly get a feasible solution. In addition,
a particular A\ value may be chosen from a historical of
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workflows executions to return a scheduling solution with
a reasonable monetary cost, based on parameters such as
workflow size (number of nodes and dependencies between
nodes) and deadline. Moreover, similar results were obtained
for the Montage and for 30-nodes fork-join DAGs.

VI. CONCLUSION

In this paper we presented A-granularity, a discretization-
time approach to decrease the scheduler running time by
using different levels of discrete time fragmentation in the
timeline of the ILP. We performed simulations with DAGs
that represent real-world applications. With the original ILP
scheduler (A 1) and large deadlines, the size of the
set of discrete time intervals 7 can be large enough to
prevent a viable solution to be found in a timely manner
in the cloud computing context. The results of our proposal
suggest that increasing the A-granularity (A > 1) can be
effective in reducing the solver execution time, yet achieving
good (low-cost) solutions. Besides that, the discretization-
time approach can help the service providers of workflow
execution to negotiate SLAs with its customers. Future
work includes the determination of an ideal A-granularity
according to the scheduler input, on-line dynamic scheduling
approach and take the I/O- or memory-bound workflows into
consideration.

ACKNOWLEDGMENT

The authors would like to thank CAPES, CNPq, and
FAPESP (2012/02778-6) for the financial support, and IBM
for providing the CPLEX tools.

REFERENCES

[1] C. Floudas and X. Lin, “Mixed integer linear programming in
process scheduling: Modeling, algorithms, and applications,”
Annals of Operations Research, vol. 139, pp. 131-162, 2005.

L. F. Bittencourt, E. R. M. Madeira, and N. L. S. da Fonseca,
“Scheduling in hybrid clouds,” Communications Magazine,
IEEE, vol. 50, no. 9, pp. 42 —47, september 2012.

(2]

[3] T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira,
“Workflow scheduling for SaaS / PaaS cloud providers con-
sidering two SLA levels,” in Network Operations and Man-

agement Symposyum (NOMS), april 2012, pp. 906 —-912.

Makespan - Ligo DAG

37

(b) Makespan

Total Solve Time (s) — Ligo DAG

1st Call ILP Solver

r = 2nd Call Recomputation
’.

\ | ‘ ‘ f

A1 ‘H‘ \

[ A0

g Y - 25

. A | 20
67 5/7 a7

217 5 37 217 5
D&/ Trax

1st Call ILP Solver
m 2nd Call Recomputation

Total Solve Time (s)
IS
8

(c) Solve Time

Results for the LIGO DAG.

[4] H. Stefansson, S. Sigmarsdottir, P. Jensson, and N. Shah,
“Discrete and continuous time representations and mathemat-
ical models for large production scheduling problems: A case
study from the pharmaceutical industry,” European Journal of
Operational Research, vol. 215, no. 2, pp. 383 — 392, 2011.

[5] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and

I. M. Llorente, “Cloud brokering mechanisms for optimized

placement of virtual machines across multiple providers,”

Journal of Future Generation Computer Systems, vol. 28,

no. 2, pp. 358-367, feb 2012.

[6] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove,

“Cost-optimal scheduling in hybrid IaaS clouds for deadline

constrained workloads,” in IEEE 3rd International Confer-

ence on Cloud Computing (CLOUD), july 2010, pp. 228 —

235.

[7] P. Harsh, F. Dudouet, R. Cascella, Y. Jegou, and C. Morin,

“Using open standards for interoperability issues, solutions,

and challenges facing cloud computing,” in 8th International

Conference on Network and Service Management (CNSM),

oct. 2012, pp. 435 —440.

[8] L. Wu, S. K. Garg, and R. Buyya, “SLA-based admission

control for a software-as-a-service provider in cloud comput-

ing environments,” Journal of Computer and System Sciences,

vol. 78, no. 5, pp. 1280 — 1299, 2012.

[9] K. L. Yee and N. Shah, “Improving the efficiency of discrete

time scheduling formulation,” Journal of Computers Chemi-

cal Engineering, vol. 22, Supl. 1, pp. S403 — S410, 1998.

[10] C. A. Floudas and X. Lin, “Continuous-time versus discrete-

time approaches for scheduling of chemical processes: a

review,” Computers & Chemical Engineering, vol. 28, no. 11,

pp- 2109 — 2129, 2004.

[11] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,

R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and

M. Samidi, “Scheduling data-intensive workflows onto

storage-constrained distributed resources,” in Intl. Symposium

on Cluster Computing and the Grid (CCGRID), Rio de

Janeiro, Brazil, 2007, pp. 401-409.



